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This paper introduces generalized diffusion models for the transport of particles in
scattering media with nonscattering inclusions. Classical diffusion is known as a good
approximation of transport only in scattering media. Based on asymptotic expansions
and the coupling of transport and diffusion models, generalized diffusion equations
with nonlocal interface conditions are proposed which offer a computationally cheap,
yet accurate, alternative to solving the full phase-space transport equations. The paper
shows which computational model should be used depending on the size and shape
of the nonscattering inclusions in the simplified setting of two space dimensions.
An important application is the treatment of clear layers in near-infrared (NIR)
spectroscopy, an imaging technique based on the propagation of NIR photons in
human tissues. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Linear transport equations are widely used to model the propagation of particles in scat-
tering media and high-frequency waves in random media [3, 15, 19, 23, 32, 33]. Since they
are posed in the phase space, transport equations are however quite expensive computation-
ally. Consequently, they are often replaced by diffusion equations, which are posed in the
position space but are only valid in highly scattering media. The approximation of transport
by diffusion is well-known [12, 14, 17, 25]. It is also known that this approximation breaks
down in nonscattering domains.

This paper presents generalized diffusion equations with nonlocal interface conditions
at the boundary of the nonscattering inclusions. These equations, which account for the
transport of particles in both the scattering and nonscattering regions, are based on an
asymptotic expansion given in [8], which displays the behavior of the particle density in
the vicinity of clear inclusions, and on the coupling of transport and diffusion equations
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presented in [6, 10]. One of the models presented here turns out to be equivalent to a
method based on techniques borrowed from radiosity [4, 20]. A numerical analysis in the
simplified setting of two space dimensions shows which computational method (classical
diffusion, generalized diffusion, or transport) should be used depending on the shape of the
nonscattering inclusions, the cost of the method, and the required accuracy.

The paper also displays the role of the extrapolation length in the diffusion approximation
to account for the leakage of particles at the boundary of the domain.

An important application of the propagation of particles in scattering and nonscattering
regions is near-infrared (NIR) spectroscopy. This imaging technique, based on the propa-
gation of nondestructive NIR photons, is increasingly being used to monitor changes in the
oxygenation of cerebral tissues, which are highly scattering media [3, 5, 20, 22, 30]. The
presence of cerebrospinal fluid (CSF) within a thin clear (i.e., nonscattering) layer a few
millimeters below the skull hampers the use of classical diffusion [18, 22].

The paper is organized as follows. Section 2 introduces the transport equation and its
classical diffusion approximation. To simplify the numerical calculations, all equations in
this paper are two dimensional and time independent. Section 3 briefly describes the numer-
ical methods used in this paper to discretize the transport and diffusion equations and shows
the role of the extrapolation length in the boundary conditions for diffusion. The derivation
of the modified diffusion equations is given in Section 4. Depending on the geometry of the
clear inclusions, two models are presented, in Sections 4.1 and 4.2. The variational formu-
lation of the generalized equations, which will be used in the numerical simulations, is also
given. Section 4.3 comments on the proposed models. The discretization, implementation,
and relative cost of the different models are presented in Section 5. The diffusion models are
numerically compared to the transport solution for several sizes of rectangular inclusions
in Section 6, with some conclusions drawn in Section 6.9. A more complicated geometry
of inclusions, as a toy problem to model clear layers in NIR spectroscopy, is considered in
Section 7.

The simulations show the inadequacy of classical diffusion to deal with thin nonscattering
inclusions and the good accuracy of the generalized diffusion models, which offer cheap
alternatives to the full phase-space transport solution.

2. TRANSPORT EQUATION AND CLASSICAL DIFFUSION APPROXIMATION

The propagation of particles in scattering media can be satisfactorily modeled by a
linear transport equation of Boltzmann type [14, 19]. Denoting by x and Ω the position
and direction of a particle, respectively, the phase-space flux density u(x,Ω) of particles
propagating through scattering media solves the linear transport equation

Ω · ∇u(x,Ω) + �a(x)u(x,Ω) + Q(u)(x,Ω) = 0 in D× V,
(1)

u(x,Ω) = g(x,Ω) on �− = {(x,Ω) ∈ ∂D× V s.t. Ω · �(x) < 0}.

Here, D is the physical domain and V the velocity space. The vector �(x) denotes the
outward normal to D at x ∈ ∂D. In most physical applications, including the propagation of
photons in human tissues introduced in the introduction, D is a three-dimensional space (al-
though we refer to [9] for an application of genuinely two-dimensional transport equations).
For computational reasons, we shall restrict ourselves in this paper to the two-dimensional
setting, D ⊂ IR2. The velocity space is chosen to be the unit circle V = S1 and we define
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Ω= (cos �, sin �) with � ∈ (0, 2�). We also identify u(x,Ω) = u(x, �). The scattering op-
erator Q(u) is defined by

Q(u)(x,Ω) = �s(x)

(
u(x,Ω) − 1

2�

∫ 2�

0
u(x, �′) d�′

)
, (2)

where �s(x) is the scattering coefficient. The absorption coefficient �a and scattering
operator describe the interaction of the particles with the underlying medium [19]. The
term g(x,Ω) represents the source of particles entering the domain D through its boundary
∂D. The results of this paper also extend to more general transport equations such as multi-
group transport equations, where V is a union of concentric circles (spheres in 3D), and
anisotropic transport equations, where the scattering operator Q(u) takes a more general
form [27].

In the regime of small absorption and large scattering, transport is known to be well
approximated by diffusion. Let us introduce the small parameter ε, which measures the
mean free path, the mean distance between two successive interactions of a particle with
the underlying medium. Mathematically, the diffusive regime is valid when the absorption
coefficient in (1) is replaced by ε�a(x) and the scattering coefficient in (2) by ε−1�x (x) and
when the parameter ε is sufficiently small.

The derivation of the diffusion approximation to particle transport has been widely ad-
dressed in the literature [12, 14, 17, 25, 27]. The method of asymptotic expansions, which
consists of analyzing the limit of the transport solution u(x,Ω) as ε → 0, is particularly
well suited to the analysis of boundary effects and embedded voids, which will be taken
on in subsequent sections. Following [17], for instance, the asymptotic expansion method
tells us that, except in the vicinity of the boundary ∂D, we have

u(x,Ω) = u0(x) − ε
�s(x)

Ω · ∇u0(x) + O(ε2), (3)

where u0 solves the diffusion equation

−∇ D(x)∇u0(x) + �a(x)u0(x) = 0 in D,
(4)

u0(x) + 2εL2 D(x)�(x) · ∇u0(x) = �(g(x,Ω)) on ∂D.

Here, the diffusion coefficient D(x) is given by

D(x) = 1

2�s(x)
, (5)

where the unusual factor 2 comes from the choice of the velocity domain V = S1. The
operator � is a linear form that maps any incoming distribution g to a real number. Explicit
expressions can be found in [15, 17], for instance. In the sequel, it will be sufficient to remark
that �(g) = g when g is independent of the direction Ω. The constant L2 = �(−Ω · �(x)) is
the extrapolation length. An approximate value is L2 = 0.8164 [9] (instead of L3 = 0.7104
when V = S2). The solution of the diffusion equation (4) with Robin boundary conditions
provides therefore an approximation of order O(ε2) to the direction-averaged transport
density away from the boundaries (in the vicinity of the boundary, boundary layer terms
need be added [9, 17]).
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Remark. This paper considers only steady equations. However, it is straightforward to
incorporate time dependence. At the transport level, the term c−1∂t u(x,Ω) should be added
on the left hand side of (1), where c is the speed of the particles. In the diffusive regime, this
translates into adding the terms c−1∂t u0(x) on the left hand side of (4), respectively (see
[17] for the details). The generalized diffusion equations derived in subsequent sections can
be modified similarly.

3. NUMERICAL IMPLEMENTATION OF TRANSPORT AND CLASSICAL DIFFUSION

There exists a rich literature on the numerical comparison of transport and classical
diffusion models [13, 24, 27]. There are also numerous methods to discretize the transport
equation (1) [17, 19, 29] and the diffusion equation (4) [16]. This section presents the
classical algorithms that will be used in this paper to solve the transport and generalized
diffusion equations and displays the role of the extrapolation length L2 in (4).

We assume in all numerical simulations that D= (0, 1)2 is the two-dimensional square.
We also define x = (x, y). We use the standard diamond discretization (DD) method for
the transport equation. In this method, the direction variable is discretized by using Na

uniformly distributed points on the unit circle, and the spatial variables by using a mesh of
Nx × Ny uniform cells of area hx × hy on the square D. We refer to [29] for the details. The
advantage of this method is its second-order accuracy and simplicity of implementation.
The diffusion equation is also solved by using a second-order accurate discretization based
on the Q1 finite element method. The discrete diffusion solution and the test functions are
continuous and linear both in x and y on every cell of the discretization (see, for instance,
[16]).

The number of unknowns in the transport equation, on the order of Na × Nx × Ny , is too
large to allow us to construct a matrix and invert it. We have therefore used the classical
source iteration method preconditioned by the Q1 diffusion discretization [1, 2]. This ac-
celeration has proved to be stable both for scattering and nonscattering regions numerically.

The accuracy of (3) relies on introducing an extrapolation length in (4) to account for the
leakage of particles at the domain boundary [12, 17]. An approximation of the extrapolation
length can be obtained by assuming that the diffusion approximation is valid up to the
boundary. This is the P1 method. It consists of assuming that the transport solution is linear
in the variable of direction and of averaging the transport equation over the variable of
direction (see [14, 19]). The extrapolation length obtained by doing so is Ldi = �/4 when
V = S1 (see [9]). This value, although asymptotically not exact, is quite close to the value
L2 = 0.8164 of the previous section.

In the remaining part of this section, we present a numerical simulation showing the role
of the extrapolation length. The incoming distribution of particles in (1) is given by the
Gaussian

g(x, 0,Ω) = e−65(x−0.5)2
for (x,Ω) ∈ (0, 1) × V, (6)

on the bottom side independent ofΩ, and with g(x,Ω) = 0 on the other edges ofD. We recall
that �(g) = g for direction-independent boundary conditions. The scattering coefficient is
�s = ε−1 and the absorption coefficient �a = ε, where ε = 1/50. The number of grid points
is Nx = Ny = 150 and Na = 64. This ensures an accuracy of the transport and diffusion
solutions of less than 10−4 for the error terms defined in (7) below.
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TABLE I

L2-Norm of the Relative Errors ei
vol and ei

no for the Three Diffusion

Approximations u1 Corresponding to L = 0.8164, u2 Corresponding

to L = �/4, and u3 Corresponding to L = 0

Error u1 u2 u3

|D1|−1‖ei
vol‖L2(D1) 2.63 × 10−4 1.35 × 10−3 3.81 × 10−2

‖ei
no‖L2(0,1) 8.14 × 10−4 4.50 × 10−3 1.20 × 10−1

We consider three diffusion approximations: u1(x), solution to (4) with the asymptotic
extrapolation length L2 = 0.8164; u2(x), solution to (4) with the diffusion extrapolation
length L2 = �/4; and u3(x), solution to (4) with no extrapolation length L2 = 0. We compare
the relative error between the transport solution u(x,Ω) and the diffusion approximations
in the volume D1 = (0.1, 0.9)2 and on the northern edge. We denote by u(x,Ω) the solution
of (1) and by U and J its first two moments,

U (x) = 1

2�

∫ 2�

0
u(x, �) d� and J(x) = 1

2�

∫ 2�

0
Ω u(x, �) d�.

Let us define

ei
vol(x) = U (x) − ui (x)

U (x)
, ei

cur(x) = J(x) · �(x) − D� · ∇ui (x)

J(x) · �(x)
, (7)

the relative errors in the volume (x ∈D) and on the edges (x ∈ ∂D), respectively. We define
ei

no(x) = ei
cur(x) if x belongs to the northern edge of D and ei

ea(x) = ei
cur(x) if x belongs to

the eastern edge.
The L2-norm, which is defined for a function f (x) on a domain X by ‖ f ‖L2(X ) =

(
∫

X | f (x)|2 dx)1/2, of relative errors is shown in Table I (the volume of a domain X is
denoted |X |). The L2-norm of the error ei

vol is compatible with theory, e3
vol being of order
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FIG. 1. Currents on the upper edge of D of the solutions to (1) and (4). (Left) Transport current J(x) · �(x)
(solid line) and diffusion currents D� · ∇ui (x) for u1 (dotted line with circles), for u2 (dotted line with crosses),
and for u3 (dot–dashed line). (Right) Relative errors ei

no(x) in (7) on the upper edge of D. Error e1
no, solid line;

error e2
no, dashed line; ε × error 0.02e3

no, dot–dashed line.
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ε and e1
vol of order ε2. The intermediate solution u2 captures most of the error made by the

least accurate u3 but is still not as accurate as u1.
Important in practice, in particular for solving inverse problems, is the current distribution

at the domain boundary. We have represented in Fig. 1 the currents obtained on the upper
edge of the domain. The figure on the left side shows that all diffusion approximations except
u3 provide visually correct estimations of the current distribution. The figure on the right
side shows that u3 is one order of magnitude less accurate than the other approximations
(εe3

no = e3
no/50 is shown in Fig. 1), and that u1 still provides a much more accurate description

of the currents in spite of the unresolved boundary layers.

4. MODELS FOR TRANSPORT THROUGH SCATTERING

AND NONSCATTERING REGIONS

The diffusion approximation discussed in the previous section holds only in highly scat-
tering media. We will see in the next section that the classical diffusion approximation gives
completely erroneous results when thin embedded voids are present. A way to overcome
this problem is to solve the phase-space transport equation in the whole domain. However,
even though modern computers now allow us to solve three-dimensional transport equations
routinely [35], the solutions are still fairly expensive, especially when the ultimate goal,
namely inverting the optical properties of tissues from boundary measurements, requires the
solution of many forward problems. Let us mention that hybrid transport-diffusion methods
(see, for instance, [10] for a deterministic algorithm and [21] for a Monte Carlo method
with diffusion-based acceleration), local refinements of the spatial discretization [7, 11], or
mean-free-path-independent numerical algorithms [26, 28] can also be used to reduce the
cost of transport.

The main result of this paper is that generalized diffusion equations can account for
the propagation of particles in both scattering and nonscattering domains provided the
latter satisfy some geometrical constraints. The generalized models are more expensive
than classical diffusion (but classical diffusion is useless), but much less costly than full
transport (and still relatively accurate).

4.1. Large Embedded Inclusions

We consider two types of nondiffusive regions in this paper. The first one models an
embedded object of size comparable to D, that is to say, large compared to the mean free
path ε. Let DC be such a subdomain of D. We denote by DE =D\DC its complementary
and assume that the embedded object DC does not touch the boundary of D. We assume
that DE is diffusive and that DC is nonscattering (and allowed to be slightly absorbing).
The particle transport can thus be modeled by the equation

Ω · ∇u(x,Ω) + 1

ε
Q(u)(x,Ω) + ε�a(x)u(x,Ω) = 0 in DE × V,

u(x,Ω) = g(x,Ω) on �−,
(8)

Ω · ∇uc(x,Ω) + ε�auc(x,Ω) = 0 in DC × V,

u(x,Ω) = uc(x,Ω) on ∂DC × V .

The last equation corresponds to the continuity of the particle density across the interface



PARTICLE TRANSPORT IN SCATTERING REGIONS 665

∂DC . The generalization of the asymptotic expansions used in Section 2 to the coupled
problem (8) has been analyzed in [8]. In that paper, it is shown that the solution u to the
coupled equation (8) can be decomposed as u = u0 + O(ε), where u0 solves the diffusion
equation

−∇ D(x)∇u0(x) + �a(x)u0(x) = 0 in DE ,

u0(x) = �(g(x,Ω)) on ∂D,
(9)

u0(x) = Constant on ∂DC ,∫
∂DC

D(x)�E · ∇u0(x) d	(x) + u0|∂DC

∫
DC

�a(y) d y = 0,

where d	 is the usual surface measure on ∂DC . Notice that the local diffusion equilib-
rium u(x,Ω) = u(x) of Section 2 is replaced by the nonlocal equilibrium u0 = Cst on
∂DC (and actually on ΩC as well). The last equality in (9) ensures particle conservation
across ∂DC .

Remark. We can check that Eq. (9) can also be obtained from the diffusion equation
(4) by formally sending the diffusion coefficient D(x) to infinity on DC (see also [8]).
This is consistent with the definition of the diffusion coefficient (5), where �s in the highly
scattering domain is replaced by ε�s in the non-highly-scattering domain. Therefore, even
though the derivation of (4) in Section 2 is not correct physically, it will still provide the
correct result (9) asymptotically.

4.2. Thin Clear Layers and Transport-Diffusion Coupling

For thin extended clear layers, the second type of inclusions considered is this paper,
the situation is more complicated and classical diffusion equations will provide very poor
approximations to transport. By a thin extended clear layer, we mean an inclusion that has an
O(1) extension in one dimension and a O(Lε) thickness in the other direction (see Fig. 2),
where Lε is a dimensionless small parameter different from ε (see below). We know from
the preceding section that the solution becomes asymptotically constant inside the inclusion
as ε → 0 when the inclusion is a domain independent of ε. The only way to obtain a richer
asymptotic limit is therefore to mathematically correlate the geometry of the inclusion with
the mean free path ε. The results of [8], where the asymptotic expansion method is extended
to this new geometry, show that a generalized diffusion equation with nonlocal boundary
conditions can be obtained when the thickness of the clear layer is such that L2

ε | ln Lε| = ε,

FIG. 2. (Left) Geometry of the clear layer. The external and internal regions D\DC
ε are diffusive, whereas the

clear layer DC
ε is not. (Right) Geometry of a straight clear layer.
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that is to say, up to logarithmic corrections, when the thickness of the layer Lε scales as√
ε, the square root of the mean free path.
We shall not reproduce the analysis of [8] here. Its salient feature for our purpose here

is that the difference between the transport and generalized diffusion solutions is of order
O(ε) everywhere. This means that to accurately describe the transport equation no boundary
layer is necessary in the vicinity of the interface separating the scattering and nonscattering
regions. This remark is important because it allows us to use the results on the coupling
of transport and diffusion equations in [6, 10] to derive a more accurate diffusion equation
than the generalized equation in [8] obtained by asymptotic expansions.

The main idea is that when no boundary layer term is necessary, it is possible to use
a diffusion approximation in the diffusive region, a transport model in the nondiffusive
one, and a coupling between the two equations at their common interface based on current
conservation. The transport-diffusion coupling analyzed in [6, 10] proceeds as follows. We
split the physical domain D into two subdomains, Ddi and Dtr, where Ddi is diffusive and
Dtr is not. Let � be their common interface and �− = {(x,Ω) ∈ � × V, Ω · �� (x) < 0},
where �� (x) is the outward unit normal to Dtr at x ∈ � . We denote by U (x) the diffusion
solution on Ddi and u(x,Ω) the transport solution on Dtr. The volume equations are then

Ω · ∇u(x,Ω) + �a(x)u(x,Ω) + Q(u)(x,Ω) = 0 in Dtr × V, (10)

−∇ D(x)∇U (x) + �a(x)U (x) = 0 in Ddi. (11)

They are augmented with the classical (transport or diffusion) boundary conditions on ∂D. It
remains to define the interface conditions. Notice that in (10), scattering is still permissible
in the transport region. However, in the application of clear layers, we will have a much
simpler transport equation since �a(x) = �s(x) = 0 on Dtr. We now consider two types of
interface conditions.

4.2.1. Model 1

Following the linear expansion in Ω of the transport solution in the diffusion approxima-
tion, we impose that

u(x,Ω) = U (x) − 1

�s(x)
Ω · ∇U (x) on �−. (12)

This model retains the leading term and the first-order perturbation in the expansion (3).
The second interface condition is obtained by enforcing current conservation,

1

2�

∫ 2�

0
Ω · �(x) u(x,Ω) d� = D(x)� · ∇U (x) on �. (13)

It is shown in [6, 10] that the above four equations with suitable conditions on ∂D form
a well-posed problem. Notice that (12) can be seen as a Dirichlet boundary condition for
the transport equation and (13) as a Neumann boundary condition for diffusion.

Let us apply this model to the problems in Sections 4.1 and 4.2 to the case of voids;
that is to say, the nondiffusive region is completely nonscattering and nonabsorbing (�s =
�a = 0), although the generalization to absorbing media is straightforward. Let us assume
for concreteness that the nondiffusive region Dtr = DC is the straight layer given on the
right of Fig. 2 (hence � = (0, 1) in the rest of this section, so that Ω · � = sin �), and the
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diffusive region Ddi is D\DC . We then recast (13) using (12) for x ∈ 	E ⊂ � as

1

2�

∫ 2�

0
sin � u(x, �) d� = 1

2�

∫ �

0
sin � u(x, �) d� + 1

2�

∫ 2�

�

sin � u(x, �) d�

= 1

2�

∫ �

0
sin � u(x, �) d� + 1

2�

∫ 2�

�

sin � U (x) d�

− 1

2��s(x)

∫ 2�

�

sin � Ω · ∇U (x) d�

= 1

2�

∫ �

0
sin �

(
Rcu|	 I

)
(x, �) d� − 1

�
U (x) + 1

4�s(x)

∂U

∂x2
(x)

= D(x)
∂U

∂x2
(x).

The operator Rc is the transport solution operator, which maps what enters the clear layer
to what exits the clear layer. In general, the definition of this operator involves solving a
complicated transport equation in Dtr × V . When �a and �s vanish inside the clear layer,
however, this operator is easily calculated. Since particles travel along straight lines in the
clear layer, we obtain for x ∈ 	E that

(Rcu)(x, �) = u(x − 2l Lε cot �Ω, �), (14)

where the point x − 2l Lε cot �Ω belongs to 	 I . Since D = (2�s)−1, according to (5), we
obtain that

D
∂U

∂x2
+ 2

�
U (x) = 1

�

∫ �

0
sin �

(
Rcu|�−

)
(x, �) d�. (15)

Let us now replace u|�− by its expression in (12). This yields for U the nonlocal boundary
condition

D
∂U

∂x2
+ 2

�
U (x) = 1

�
(G0[U ](x) − G1[U ](x)), (16)

where

G0[U ](x) =
∫ �

0
sin �(RcU )(x, �) d�,

G1[U ](x) =
∫ �

0
sin �

(
Rc Ω · ∇U

�s

)
(x, �) d�.

(17)

This defines Model 1. The definition of the above terms can then be generalized to other
orientations of the boundary normal �.

4.2.2. Model 2

Another model consists of retaining only the leading term in the expansion (3) and using
the same generalized boundary condition (15). The nonlocal boundary condition (16) for
U is then replaced by

D
∂U

∂x2
+ 2

�
U (x) = 1

�

∫ �

0
sin �(RcU )(x, �) d�. (18)
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Following the same calculations as in the previous section, we see that the current conser-
vation (13) is now replaced by

1

�

∫ 2�

0
Ω · �(x) u(x,Ω) d� = D(x)� · ∇U (x) on �. (19)

Therefore, current conservation is no longer imposed in this model (a factor 2 is missing).
Notice however that both currents tend to 0 as the mean free path tends to 0. Therefore,
only an equation of the order of the mean free path ε is not correctly satisfied.

In the three-dimensional setting, the above equality needs to be replaced by

D� · ∇U + 1

2
U (x) = 1

4�

∫
V +

Ω · �(RcU )(x,Ω) dΩ, (20)

where V + is the set of outgoing directions at x and dΩ the usual solid-angle measure. This
relation is equivalent to the hybrid radiosity-diffusion theory proposed in [4, 20]. It has also
been analyzed as a transport-diffusion coupling in [34].

4.2.3. Variational Formulation

Let us define m = 1 for Model 1 and m = 0 for Model 2. The diffusion equation with
nonlocal boundary conditions (11)–(16) on � and local boundary conditions on ∂D is now
a closed equation for U on Ddi:

−∇ D(x)∇U (x) + �a(x)U (x) = 0 in D\DC ,

U (x) + 2L D(x)� · ∇U (x) = �(g(x)) on ∂D,

D� · ∇U + 2

�
U = 1

�
(G0[U ]) − mG1[U ]) on ∂DC .

(21)

Its variational formulation is as follows: Find U ∈ H 1(Ddi) such that for every test function
� ∈ H 1(Ddi), we have

∫
Ddi

(D∇U ·∇� + �aU�) dx+
∫

�

�

�
(2U −G0[U ]+mG1[U ]) d	(x)

+
∫

∂D

1

2L
U�d	(x) =

∫
∂D

1

2L
�(g)�d	(x). (22)

Here, d	 denotes the usual surface measure.
The variational formulation (22) lends itself very naturally to the discretization by any

Galerkin method, such as the Q1 finite element method chosen in this paper.

4.3. Interpretation of the Models

We have obtained two different types of generalized diffusion equations that account for
nonscattering and nonabsorbing inclusions. When the inclusion is large, the solution tends
to be uniformly constant inside the inclusion, provided the mean free path is sufficiently
small (see (9)). Classical diffusion can then be used. When the inclusion is thin in one
direction (such as for clear layers), it plays the role of a waveguide that is not captured
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by classical diffusion. Generalized diffusion equations with nonlocal boundary conditions
must then be used. An important property obtained from asymptotic expansions is that no
boundary layer is necessary in the vicinity of the inclusion to approximate the transport
solution (at least in the leading order; there are boundary layers of size O(ε)). This allowed
us to derive a method based on solving the diffusion equation in the diffusive domain and
the transport equation in the inclusions, and on coupling the two solutions at their common
interface.

Depending on the choice of the coupling (first-order or second-order accurate), two
models have been presented. Model 1 is a priori more accurate than Model 2 since more
terms are retained in the asymptotic expansion (3). However, both models are asymptotically
of order O(ε), as boundary layer terms of order O(ε) are not accounted for. Moreover,
Model 1 involves the gradient Ω · ∇U over the whole surface � ; hence it is more expensive
to solve and implement. We will see that Model 1 is actually significantly more accurate
than Model 2 in most situations.

The nonlocal boundary conditions of Models 1 and 2 can be generalized to more com-
plicated geometries in a straightforward manner. For complicated geometries, however,
the calculation of the solution operator Rc becomes more involved and requires knowing
at each point x of the boundary � all the other visible points y ∈ � such that the seg-
ment (x, y) does not intersect � . The feasibility and efficiency of ray tracing will then
become a crucial ingredient of the method, an important aspect that we consider in this
paper.

5. IMPLEMENTATION AND RELATIVE COST OF TRANSPORT

AND CLASSICAL AND GENERALIZED DIFFUSION

This section and the following two sections are devoted to the numerical implementation
of the diffusion approximations presented in the preceding sections and their comparison
with transport. The geometry is that of a scattering domain D = (0, 1)2 with embedded
voids of various shapes.

We denote by u(x,Ω) the solution of the diamond discretization of the transport equation
(8) and by U (x) its average over the discrete ordinates. We consider the discretization of
four diffusion approximations. The solution of Model 1 is denoted u1(x) and that of Model 2
u2(x). The solution of the classical diffusion model, which is also the solution to (9) since the
diffusion coefficient is infinite in voids, is denoted u3(x). We also consider a fourth diffusion
solution u4(x), where the voids have been replaced by the same scattering medium as the
rest of the domain (u4 is therefore the solution of the diffusion equation in a homogeneous
domain). In the subsequent sections, we refer to U (x) as the transport solution, to which
the diffusion models ui (x), i = 1, . . . , 4 are compared.

5.1. Numerical Implementation of the Nonlocal Interface Conditions

The numerical implementation of transport and classical diffusion has been addressed in
Section 3. The implementation of the generalized diffusion equation with nonlocal interface
conditions is based on the variational formulation (22). Except for the integration term over
� , all the other terms are classical in the variational formulation of elliptic problems. In
the two-dimensional Q1 approximation, the basis for the test functions � is composed of
piecewise bilinear functions in x and y that equal 1 at one grid point of the mesh and 0 at
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the other points. Let us denote by Ni the basis function that equals 1 at the i th point of the
grid and consider the case m = 0 to simplify. The integration along � in (22) involves the
computation of terms of the form

∫
�

Ni

�

(
2Nk −

∫ �

0
sin �(Rc Nk)(x, �) d�

)
d	 (23)

for those points i and k of the grid that are on � . The response operator defined by (14) is
easy to compute when DC is a rectangle: Particles travel through the clear domain along
straight lines until they leave it. By symmetry, we essentially have two cases to analyze
accordingly, (1) Ni and Nk belong to opposite side or (2) they belong to adjacent side. For
instance, if Ni |� is supported on the upper side and Nk |� on the lower side, (23) is recast
using (14) as

1

�

∫
�

Ni (x)
∫ �

0
sin �(Nk(x) − Nk(x − Lx cot �)) d�. (24)

After the change of variables z = x − Lx cot � and recalling that Ni and Nk are piecewise
linear on � , we obtain for the second term in (24) the expression

−h2
x

�

∫ 1

−1
(1 − |x |)

∫ j+1

j−1

1

[1 + (hx (x − z)/Lx )2]3/2

1

Lx
(1 − |z − j |) dz dx, (25)

where jhx is the horizontal distance between the nodes Ni and Nk . Similarly, if Ni |� is
supported on the lower side and Nk |� on the left side, (23) is given by

−hx hy

�

∫ Y+1

Y−1
(1 − |y − Y |)

∫ X+1

X−1
(1 − |x − X |) xhx yhy dx dy

[(xhx )2 + (yhy)2]3/2
, (26)

where Y hy is the distance between the origin and the kth node and Xhx is the distance
between the origin and the i th node. Similar expressions are also obtained when one of the
nodes is a corner of DC . These integrals have been computed numerically with sufficient
accuracy (see next section) using a Gaussian quadrature rule. The case m = 1 is handled
similarly. We do not report the lengthy details.

5.2. Comparison of the Costs of Transport and Diffusion

The running times indicated in this section correspond to codes written in MATLAB and
running on a Pentium II 400 MHz processor with LINUX environment.

The solution of the classical diffusion equation requires two steps. The first one consists
of constructing the matrix we want to invert and the source terms, and the second one of
inverting the corresponding linear system. This second step has been performed by using the
conjugate gradient method with incomplete LU preconditioning. Solving the generalized
diffusion equations (22) requires one additional step in the construction of the matrix to
invert, which accounts for the nonlocal interface conditions at the boundary of the void.
The terms of the form (25) and (26) are calculated using a Gaussian quadrature rule [31].

We compare the transport and diffusion solutions in the configuration of Test 4 in
Section 6.4. The domain is D = (0, 1)2 and the inclusion DC = (0.5, 0.6) × (0.3, 0.7).
The spatial discretization is the same for all solutions with Nx = Ny = 200.
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The accuracy of the best diffusion approximation compared with the transport solution is
at best of order 10−3, as reported in the following section. The parameters of the diffusion
and transport solutions have therefore be tuned so that the running time is minimized and
the precision with respect to a corresponding very fine solution is higher than 10−3.

By doing so, we found that the minimum number of points of the Gaussian quadrature
rule used on every segment to calculate (25) and (26) is NG = 8. The time to construct the
diffusion matrix without the interface conditions and the source term is 4.5 s. The time to
construct the matrix corresponding to the interface conditions is 56 s for Model 2 and 162 s
for Model 1. The time to solve the diffusion problems once the matrices are constructed is
about 40 s (and varies very little for the different solutions u1, u2, and u3).

The total running time for the diffusion models is therefore t3 = 45 s for the classical
diffusion solution u3, t2 = 106 s for the solution u2 of Model 2, and t1 = 212 s for the
solution u1 of Model 1. In comparison, the total running time of the transport solution is tu =
3.5 × 103 s. It was obtained after 22 iterations of the source iteration method preconditioned
by the Q1 diffusion solver. The necessary number of directions is Na = 16. The time spent
in the diffusion acceleration is negligible compared to the free transport solutions obtained
at each iteration of the source iteration method.

We therefore find that the classical diffusion solution u3 is �3 = 78 times faster than the
transport solution, and that the generalized diffusion solutions u1 and u2 are �1 = 17 and
�2 = 33 times faster than the transport solution, respectively.

Remark. Although the generalized diffusion solutions above remain more than 1 order
of magnitude less expensive than the transport solution, they are still significantly more
expensive than the classical diffusion equations. We believe that the latter ratio can be im-
proved. The complexity of calculating the matrix corresponding to the interface conditions
is at most proportional to N 2

Gnx ny , where the layer is composed of nx ny unit cells. It is
therefore asymptotically less than the cost of the classical diffusion. One reason that explains
why �3 is much larger than �1 is inherent to MATLAB: The calculation of the matrix of the
interface conditions is the only nonvectorized part and is therefore less optimal than the rest
of the code. It is therefore expected that an implementation in Fortran and C would increase
the ratios �1 and �2. Also, the number of quadrature points NG in our implementation is the
same for calculating all the terms of the matrix. The interactions of far apart nodes could be
calculated with a lesser accuracy without modifying the overall accuracy of the calculation
and thus improve the cost of the algorithm.

6. PARTICLE TRANSPORT IN VOIDS

This section numerically analyzes the diffusion approximations introduced in the pre-
ceding sections for different shapes of the embedded voids.

The domain D = (0, 1)2 and we assume that the clear inclusion is a rectangle DC =
(a, b) × (c, d) ⊂ D. We define Lx = (b − a) and L y = (d − c). In all the numerical simu-
lations, the boundary conditions and volume sources vanish everywhere except on the lower
side, where the incoming distribution of particles is given by (6). The absorption coefficient
is �a = ε and the scattering coefficient �s = 1/ε, where the mean free path ε varies with the
simulation. The number of angular directions is Na = 128 and the number of spatial cells
Nx = Ny = 200. The other parameters of the transport and diffusion solvers are chosen
such that the accuracy obtained for each solution is less than 10−4.
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FIG. 3. Currents on the left edge (left figure) and upper edge (right figure) of D for Test 1. Represented are
the transport current J(x) · �(x) (solid line) and the diffusion currents D� · ∇ui (x) calculated from u1 (dashed
line), u2 (dot–dashed line), u3 (dotted line with triangles), and u4 (dotted line with circles).

6.1. Test 1

In this section we consider a void of the form DC = (0.4, 0.6)2. We assume that the
mean free path ε = 1/50. We define the control volumeD1 = (0.1, 0.9) × (0.7, 0.9) located
between the inclusion DC and the upper edge of D. Since the inclusion DC stands between
the incoming source g and the control volume, D1 is the domain where the diffusion
approximations are expected to be the least accurate.

The currents on the upper and left edges are shown in Fig. 3. A horizontal cross section
at y = 0.6 and a vertical cross section at x = 0.5 of the different solutions are given in
Fig. 4. The numerical simulation is consistent with theory. Because the volume of the void
is significant, replacing it with a diffusive body will change the solution substantially. This
is confirmed by the poor quality of the solution u4. Since the mean free path ε is small
compared to the size of the inclusion, the analysis in Section 4.1 applies and the classical
diffusion approximation is close to the solution of (9). Therefore, u3 should be a decent
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FIG. 4. Horizontal cross section at y = 0.6 (left figure) and a vertical cross section at x = 0.5 (right figure) of
Test 1. Represented are the direction average of the transport solution U (x) (solid line) and the diffusion solutions
u1(x) (dashed line), u2(x) (dot–dashed line), u3(x) (dotted line with triangles), and u4(x) (dotted line with circles).
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TABLE II

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/50, Test 1

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 7.3 × 10−3 2.5 × 10−2 2.8 × 10−2 0.23

‖ei
no‖L2(0,1) 6.9 × 10−3 2.4 × 10−2 2.8 × 10−2 0.22

‖ei
ea‖L2(0,1) 3.0 × 10−3 8.8 × 10−3 1.6 × 10−2 9.2 × 10−2

approximation of the transport equation. Notice the characteristic plateaulike pattern of u3

that appears in Fig. 4 because u3 is constant on DC . Both u1 and u2, which have more
degrees of freedom than u3 and incorporate more physics, are also more accurate even
though there are theoretically also approximations of order ε of the exact transport solution.
This is confirmed by the quantitative volume and current errors given in Table II.

6.2. Test 2

We now consider the case of a mean free path ε = 1/100. The other parameters are the
same as for Test 1. The currents on the upper and left edges are shown in Fig. 5. A horizontal
cross section at y = 0.6 and a vertical cross section at x = 0.5 of the different solutions are
given in Fig. 6. The volume error and current error on the upper edge are given in Table III.

As expected, the solution u4 is as inaccurate as for the previous example. All other
solutions are more accurate than for Test 1. Since the mean free path has been divided by
a factor 2 and the solutions u1, u2, and u3 are all approximations of order ε, we expect the
errors to decrease by a factor 2 from Test 1 to Test 2. This is roughly confirmed by the
results in Table III. Notice that the constraint u = Cst inside the inclusion is better satisfied
by the transport solution for ε = 1/100 than for ε = 1/50, as can be seen in Fig. 6.

6.3. Test 3

We now present a sequence of numerical simulations where classical diffusion fails to
accurately predict the particle density in the whole domain.
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FIG. 5. Same as Fig. 3, for Test 2.
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FIG. 6. Same as Fig. 4, for Test 2.

In this third test, the nonscattering inclusion is DC = (0.5, 0.6) × (0.3, 0.7). The value
of ε is 1/50 and the control volume D1 = (0.1, 0.4) × (0.7, 0.9). Notice that Lx = 5ε and
L y = 20ε. Whereas L y can be considered as large compared with ε, this is not the case for
Lx . Therefore the classical diffusion approximation is expected not to perform too well.
This is confirmed by the currents on the upper and left edges of the solution u3 shown in
Fig. 7.

The other solutions, u1 and u2, which are predicted by theory to be good approximations
of the transport equation both for nonthin and thin extended clear objects, are seen to
accurately describe the density inside and outside the transparent inclusion. The horizontal
cross section going through the inclusion at y = 0.6 and the vertical cross section at x = 0.2
of the different solutions are given in Fig. 8. Notice again the flat part of the transport
solution and the diffusion solutions u1 for i = 1, 2, 3 inside the inclusion (0.5 < x < 0.6).

The volume error inD1 and current error on the upper and left edges are given in Table IV.
The solutions u1 and u2 display a similar accuracy, u1 being slightly more accurate overall.
Whereas u4 is completely erroneous, the error between the transport solution and u3 is now
about 20%. The classical diffusion approximation overestimates the wave guide property
within the clear inclusion (the outgoing flux on the upper edge is too high). A more accurate
description of the particle propagation through the inclusion is necessary.

6.4. Test 4

Consider the same inclusion DC = (0.5, 0.6) × (0.3, 0.7) with now ε = 1/100. The cur-
rents on the upper and left edges are shown in Fig. 9, the horizontal cross section at y = 0.6

TABLE III

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/100, Test 2

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 4.2 × 10−3 1.2 × 10−2 1.8 × 10−2 0.24

‖ei
no‖L2(0,1) 3.9 × 10−3 1.1 × 10−2 1.8 × 10−2 0.23

‖ei
ea‖L2(0,1) 1.9 × 10−3 4.3 × 10−3 1.0 × 10−2 0.10
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FIG. 7. Same as Fig. 3, for Test 3.

and vertical cross section at x = 0.2 in Fig. 10, and the volume error and current error on
the upper and left edges in Table V.

We now have Lx = 10ε and L y = 40ε. Therefore, Lx becomes relatively large compared
with ε, and the theory in Section 4.1 shows that u3 should become a more accurate approxi-
mation. This can be seen by comparing the left hand sides of Figs. 8 and 10. Notice also that
the error of u3 on D1 reduces from 17 to 11%, which is on the order of ε/Lx , as expected
from theory.

The solutions u1 and u2, which incorporate more physics, provide an accurate description
of the transport solution. Notice here that u1 is about twice as accurate as u2. This is because
the gradient of the density, which is better accounted for by the model m = 1, becomes
important along the vertical edges of the inclusion.

6.5. Test 5

The subsequent tests of this section are concerned with very extended inclusions. Consider
first the inclusion DC = (0.5, 0.6) × (0.1, 0.9). We set here ε = 1/50. The control volume
is D1 = (0.1, 0.4) × (0.7, 0.9).

The same features of the diffusion solutions as before are displayed for this test. The
currents on the upper and left edges are shown in Fig. 11. A horizontal cross section at
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FIG. 8. Same as Fig. 4, for Test 3.
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TABLE IV

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/50, Test 3

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 1.1 × 10−2 1.9 × 10−2 0.17 0.24

‖ei
no‖L2(0,1) 1.8 × 10−2 1.4 × 10−2 0.20 0.34

‖ei
ea‖L2(0,1) 7.4 × 10−3 9.2 × 10−3 0.11 0.17

TABLE V

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/100, Test 4

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 5.4 × 10−3 2.2 × 10−2 0.11 0.29

‖ei
no‖L2(0,1) 9.0 × 10−3 2.3 × 10−2 0.13 0.38

‖ei
ea‖L2(0,1) 3.7 × 10−3 1.3 × 10−2 7.1 × 10−2 0.20
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FIG. 9. Same as Fig. 3, for Test 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Horizontal Cross–section; y=0.6

x–axis 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Vertical Cross–section; x=0.2

FIG. 10. Same as Fig. 4, for Test 4.
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FIG. 11. Same as Fig.3, for Test 5.

y = 0.6 and a vertical cross section at x = 0.2 of the different solutions are given in Fig. 12.
The volume error and current error on the upper and left edges are given in Table VI.

This example is a striking display of the overestimation by classical diffusion of the
particle dispersion inside the clear layer. Because the diffusion coefficient is very large
within the clear layer, the particle distribution is almost constant on ∂DC and the flux
of particles crossing the layer much larger than for transport (see the right hand side of
Fig. 11). As a result, the error between the transport solution and u3 reaches 73% on D1,
which renders the classical diffusion solution completely useless.

The two generalized diffusion solutions u1 and u2 are good approximations of the trans-
port solution. Notice however that u1 is now almost 1 order of magnitude better than u2.
This is again due to the presence of large gradients of the density along the vertical edges of
the clear inclusion. An asymptotic expansion based on (12) rather than on u(x,Ω) ≈ U (x)
is then much more desirable.

6.6. Test 6

The parameters of this test are the same as for the previous one, except that now ε = 1/100.
The clear layer is 10 mean free paths thick and 80 mean free paths long. The currents on
the upper and left edges are shown in Fig. 13. A horizontal cross section at y = 0.6 and a
vertical cross section at x = 0.2 of the different solutions are given in Fig. 14. The volume
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FIG. 12. Same as Fig.4, for Test 5.
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TABLE VI

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/50, Test 5

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 2.1 × 10−2 0.12 0.73 0.50

‖ei
no‖L2(0,1) 4.1 × 10−2 1.3 × 10−2 0.95 0.66

‖ei
ea‖L2(0,1) 1.4 × 10−2 7.4 × 10−2 0.45 0.35

TABLE VII

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/100, Test 6

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 7.4 × 10−3 0.12 0.47 0.58

‖ei
no‖L2(0,1) 1.9 × 10−2 0.14 0.59 0.73

‖ei
ea‖L2(0,1) 4.5 × 10−3 7.8 × 10−2 0.29 0.41
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FIG. 13. Same as Fig. 3, for Test 6.
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FIG. 15. Same as Fig. 3, for Test 7.

error and current errors on the upper and left edges are given in Table VII. As the mean
free path ε goes to 0, u1 gets closer to the transport solution. However, the solution u2 for
ε = 1/100 does not perform better than for ε = 1/50. The reason, as in the previous case,
is that gradients of the flux along the clear layer are quite strong in this test and the model
m = 0 is not capable of capturing them accurately.

6.7. Test 7

Consider now the thinner inclusion DC = (0.5, 0.55) × (0.2, 0.8). The value of ε is set to
1/50 and the control volume to D1 = (0.1, 0.4) × (0.7, 0.9).

Again, the currents on the upper and left edges are displayed in Fig. 15, the horizontal
cross section at y = 0.6 and vertical cross section at x = 0.2 of the different solutions are in
Fig. 16, and the volume error and current error on the upper edge are in Table VIII.

Most of the comments of Test 5 apply here. The main difference is that because the
clear layer is thinner, fewer particles are guided toward the northern edge than in Test 5.
As a consequence, the solution u4, which replaces the inclusion by a diffusive medium,
becomes less inaccurate. An error on the order of 30% is still unacceptable in practice.
Notice however that it is smaller than the error given by u3. It is better to ignore a thin clear
layer than to model it with a classical diffusive model.
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FIG. 16. Same as Fig. 4, for Test 7.
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TABLE VIII

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/50, Test 7

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 2.6 × 10−2 5.8 × 10−2 0.65 0.26

‖ei
no‖L2(0,1) 3.9 × 10−2 6.4 × 10−2 0.83 0.34

‖ei
ea‖L2(0,1) 1.5 × 10−2 2.8 × 10−2 0.33 0.14

6.8. Test 8

In the last test of this section, the parameters are the same as those of Test 7, except that
now ε = 1/100. The currents on the upper and left edges are shown in Fig. 17, the horizontal
cross section at y = 0.6 and vertical cross section at x = 0.2 of the different solutions are
given in Fig. 18, and the volume error and current error on the upper edge are given in
Table IX. The comments of Test 6 apply here also. Again, the main difference with Test 6
is that u4 is now more accurate because the clear layer is thinner.

6.9. Conclusions

The diffusion model u3 gives realistic results only in the case of nonthin inclusions (Tests 1
and 2). For thinner inclusions, the classical diffusion highly overestimates the flow of
particles within the clear layer and cannot be used in practice. The solution u4, where
the clear layer is replaced by a diffusive medium and which is given here as a reference, is
obviously not a good model either because it overlooks the waveguide effect within the clear
layer. It becomes however better than u3 when the layer is very thin. The models u1 and u2,
based on generalized interface conditions at the boundary of the layer, correctly account for
the dispersion of particles inside the clear layer. Although asymptotically equivalent, the
first model, u1, incorporates more physics and has been shown numerically to be always
more accurate than u2. The reason is that the spatial gradient of the density along the edges
of the inclusion is better accounted for by u1.

Notice however that the solution u1 is sensibly more expensive to solve and more cumber-
some to implement than u2, as shown in Section 5.2. The difficulty of implementation may
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FIG. 17. Same as Fig. 3, for Test 8.
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FIG. 18. Same as Fig. 4, for Test 8.

even be amplified for more complex geometries involving curved layers. Whereas solving
for u1 seems necessary for very elongated voids, u2 offers a good compromise between
computation and implementation cost and accuracy for smaller layers.

7. CLEAR LAYERS AND VOIDS IN OPTICAL TOMOGRAPHY

We now consider a setting that models more closely (albeit in two space dimensions) the
propagation of NIR photons through scattering regions and voids in an important application
of optical tomography. The human head is “modeled” by the domainD shown in Fig. 2. The
clear layer, filled with the cerebrospinal fluid, is DC . For simplicity, we assume here that it
is nonscattering and nonabsorbing, which is a good first approximation. The surrounding
human tissues are strongly scattering and weakly absorbing for NIR frequencies (D\DC in
Fig. 2). The clear layer is modeled as shown in Fig. 19. Although the Cartesian grid used
in the numerical simulations is clearly apparent, realistic clear layers have a nonconstant
thickness and the clear layer in Fig. 19 can therefore be seen as a relevant-toy problem.

We consider two numerical simulations. In the first one, the mean free path is ε = 1/50,
with scattering coefficient �s = 1/ε and absorption coefficient �a = ε. We introduce two
control volumes,D1 = (0.4, 0.6)2 andD2 = (0.7, 0.9) × (0.8, 0.9). The currents on the upper
and left edges are shown in Fig. 20, the horizontal cross section at y = 0.6 and vertical cross
section at x = 0.2 of the different solutions are in Fig. 21, and the volume errors and current
error on the upper and left edges are in Table X.

The clear layer is relatively thin (2.5ε) and its effect should therefore be relatively limited.
This is confirmed by the behavior of the solution u4, obtained by replacing the clear layer

TABLE IX

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/100, Test 8

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 1.5 × 10−2 9.4 × 10−2 0.49 0.34

‖ei
no‖L2(0,1) 2.2 × 10−2 0.11 0.61 0.43

‖ei
ea‖L2(0,1) 8.7 × 10−3 4.9 × 10−2 0.25 0.19
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FIG. 19. Geometry of the scattering domain D= (0, 1)2 with nonscattering clear layer DC . The thickness of
the clear layer is 0.05. The length of the four larger parts is 0.2 and that of the eight remaining ones 0.1.
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FIG. 20. Same as Fig. 3, for the test of Fig. 19 with ε = 1/50.
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FIG. 21. Same as Fig. 4, for the test of Fig. 19 with ε = 1/50.
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TABLE X

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/50, Test of Fig. 19

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 4.5 × 10−3 8.4 × 10−3 0.23 3.3 × 10−2

|D2|−1‖ei
vol‖L2(D1) 3.8 × 10−2 7.1 × 10−2 1.3 0.28

‖ei
no‖L2(0,1) 3.4 × 10−2 7.7 × 10−2 1.4 0.27

‖ei
ea‖L2(0,1) 2.3 × 10−2 5.5 × 10−2 0.65 0.20

TABLE XI

L2-Norm of the Relative Errors ei
vol and ei

cur with ε = 1/100, Test of Fig. 19

Error u1 u2 u3 u4

|D1|−1‖ei
vol‖L2(D1) 4.0 × 10−3 6.1 × 10−3 0.22 3.9 × 10−2

|D2|−1‖ei
vol‖L2(D1) 2.9 × 10−2 2.9 × 10−2 1.2 0.33

‖ei
no‖L2(0,1) 2.9 × 10−2 3.5 × 10−2 1.3 0.32

‖ei
ea‖L2(0,1) 1.8 × 10−2 2.6 × 10−2 0.60 0.23
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FIG. 22. Same as Fig. 3, for the test of Fig. 19 with ε = 1/100.
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FIG. 23. Same as Fig. 4, for the test of Fig. 19 with ε = 1/100.
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by a diffusive medium. The error between the transport solution and u4 is on the order of
20%. As we have seen in the previous section, the classical diffusion solution u3 largely
overestimates the flow of photons propagating through the clear layer (the current on the
northern edge of u3 is 2.4 bigger than that of the transport solution). Using the classical
diffusion solution u3 is again the worst case scenario.

In spite of the large number of corners and singularities in the clear layer, the solutions u1

and u2 provide very decent approximations to the transport solution. Again, u1 is approxi-
mately twice as accurate as u2, with an error that remains on the order of a few percent, both
inside (domain D1) and on the upper side (domain D2 and northern current) of the clear
layer. The diffusion solution u1 offers therefore an interesting alternative to computing the
transport solution with an error that remains acceptable.

In the second numerical simulation, all coefficients are the same as before, except the
mean free path ε = 1/100. The currents on the upper and left edges are shown in Fig. 22,
the horizontal cross section at y = 0.6 and vertical cross section at x = 0.2 of the different
solutions are given in Fig. 23, and the volume errors and current error on the upper and left
edges are given in Table XI.

The conclusions drawn from the first simulation remain valid for this second simulation.
Notice that u1 and u2 are closer to the exact solution than in the previous case. This is
expected since the mean free path within the diffusive regime is now smaller.
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l’Université Paris, 1997).

7. G. Bal, Spatially Varying discrete ordinates methods in XY -geometry, Math. Models Methods Appl. Sci. 10(9),
1277 (2000).

8. G. Bal, Transport through diffusive and non-diffusive regions, embedded objects, and clear layers, SIAM J.
Appl. Math. 62(5), 1677 (2002).

9. G. Bal, V. Freilikher, G. Papanicolaou, and L. Ryzhik, Wave transport along surfaces with random impedance,
Phys. Rev. B 62(10), 6228 (2000).

10. G. Bal and Y. Maday, Coupling of transport and diffusion models in linear transport theory, Math. Model.
Numer. Anal. 36(1), 69 (2002).



PARTICLE TRANSPORT IN SCATTERING REGIONS 685

11. G. Bal and X. Warin, Discrete ordinates methods in xy-geometry with spatially varying angular discretization,
Nucl. Sci. Eng. 127(2), 169 (1997).

12. A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Boundary layers and homogenization of transport processes,
Res. Inst. Math. Sci. Kyoto Univ. 15, 53 (1979).

13. C. Börgers, E. W. Larsen, and M. L. Adams, The asymptotic diffusion limit of a linear discontinuous dis-
cretization of a 2-dimensional linear transport equation, J. Comput. Phys. 98, 285 (1992).

14. K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley Series in Nuclear Engineering
(Addison–Wesley, Reading, 1967).

15. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

16. P. G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

17. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology
(Springer-Verlag, Berlin, 1993), Vol. 6.

18. H. Dehghani, D. T. Delphy, and S. R. Arridge, Photon migration in non-scattering tissue and the effects on
image reconstruction, Phys. Med. Biol. 44, 2897 (1999).

19. J. J. Duderstadt and W. R. Martin, Transport Theory (Wiley-Interscience, New York, 1979).

20. M. Firbank, S. A. Arridge, M. Schweiger, and D. T. Delpy, An investigation of light transport through scattering
bodies with non-scattering regions, Phys. Med. Biol. 41, 767 (1996).

21. N. A. Gentile, Implicit Monte Carlo diffusion—An acceleration method for Monte Carlo time-dependent
radiative transfer simulations, J. Comput. Phys. 172, 543 (2001).

22. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, Comparison of finite-difference transport and diffusion
calculations for photon migration in homogeneous and heterogeneous tissues, Phys. Med. Biol. 43, 1285
(1998).

23. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978).

24. E. W. Larsen, The asymptotic diffusion limit of discretized transport problems, Nucl. Sci. Eng. 112(4), 336
(1992).

25. E. W. Larsen and J. B. Keller, Asymptotic solution of neutron transport problems for small mean free paths,
J. Math. Phys. 15, 75 (1974).

26. E. W. Larsen and J. E. Morel, Asymptotic solutions of numerical transport problems in optically thick diffusive
regimes, ii. J. Comput. Phys. 83, 212 (1989).

27. E. W. Larsen, J. E. Morel, and J. M. McGhee, Asymptotic derivation of the multigroup P1 and simplified PN

equations with anisotropic scattering, Nucl. Sci. Eng. 123, 328 (1996).

28. E. W. Larsen, J. E. Morel, and W. F. Miller, Jr, Asymptotic solutions of numerical transport problems in
optically thick, diffusive regimes, J. Comput. Phys. 69, 283 (1987).

29. E. E. Lewis and W. F. Miller, Jr, Computational Methods of Neutron Transport (Wiley, New York, 1984).

30. J. M. Luck and Th. M. Nieuwenhuizen, Light scattering from mesoscopic objects in diffusive media, Eur.
Phys. J. B 7(3), 483 (1999).

31. W. H. Press, et al., Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press,
Cambridge, MA, 1988).

32. L. Ryzhik, G. Papanicolaou, and J. B. Keller, Transport equations for elastic and other waves in random media,
Wave Motion 24, 327 (1996).

33. H. Sato and M. C. Fehler, Seismic Wave Propagation and Scattering in the Heterogeneous Earth, AIP Series
in Modern Acoustics and Signal Processing (AIP Press, New York, 1998).

34. M. Tidriri, Asymptotic analysis of a coupled system of kinetic equations, C.R. Acad. Sci. Paris 328, 637
(1999).

35. T. A. Wareing, J. M. McGhee, J. E. Morel, and S. D. Pautz, Discontinuous finite element SN methods on
three-dimensional unstructured grids, Nucl. Sci. Eng. 138(3), 256 (2001).


	1. INTRODUCTION
	2. TRANSPORT EQUATION AND CLASSICAL DIFFUSION APPROXIMATION
	3. NUMERICAL IMPLEMENTATION OF TRANSPORT AND CLASSICAL DIFFUSION
	TABLE I
	FIG. 1.

	4. MODELS FOR TRANSPORT THROUGH SCATTERING AND NONSCATTERING REGIONS
	FIG. 2.

	5. IMPLEMENTATION AND RELATIVE COST OF TRANSPORT AND CLASSICAL AND GENERALIZED DIFFUSION
	6. PARTICLE TRANSPORT IN VOIDS
	FIG. 3.
	FIG. 4.
	TABLE II
	FIG. 5.
	FIG. 6.
	TABLE III
	FIG. 7.
	FIG. 8.
	TABLE IV
	TABLE V
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	TABLE VI
	TABLE VII
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	TABLE VIII
	FIG. 17.
	FIG. 18.

	7. CLEAR LAYERS AND VOIDS IN OPTICAL TOMOGRAPHY
	TABLE IX
	FIG. 19.
	FIG. 20.
	FIG. 21.
	TABLE X
	TABLE XI
	FIG. 22.
	FIG. 23.

	ACKNOWLEDGMENTS
	REFERENCES

